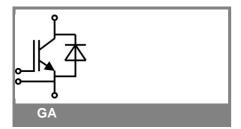


IGBT Modules

SKM 300GA123D

Features


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

Switching (not for linear use)

Absolute	Maximum Ratings	25 °C, unless otherwise specified		
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	300	Α
		T _{case} = 80 °C	220	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α
V_{GES}			± 20	٧
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	iode		l	
I _F	T _j = 150 °C	T_{case} = 25 °C	300	Α
		T _{case} = 80 °C	200	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α
I _{FSM}	$t_{p} = 10 \text{ ms; sin.}$	T _j = 150 °C	2200	Α
Module	•			
I _{t(RMS)}			500	Α
T _{vj}			- 40 + 150 (125)	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

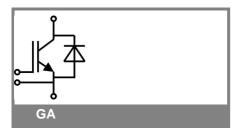
Characteristics		$T_c =$	T_c = 25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		5,5	7	mΩ
		T _j = 125°C		7,5	9,5	mΩ
$V_{\text{CE(sat)}}$	I _{Cnom} = 200 A, V _{GE} = 15 V	$T_j = {^{\circ}C_{chiplev.}}$		2,5	3	V
C _{ies}				15	19	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2	2,6	nF
C _{res}				1	1,3	nF
Q_G	V _{GE} = -8V - +20V			2000		nC
R_{Gint}	T _j = °C			1,25		Ω
t _{d(on)}				250	400	ns
t,	$R_{Gon} = 4.7 \Omega$	V _{CC} = 600V		90	160	ns
E _{on}		I _{Cnom} = 200A		26		mJ
^L d(off)	R_{Goff} = 4,7 Ω	T _j = 125 °C		550	700	ns
t _f				70	100	ns
E_{off}				22		mJ
$R_{th(j-c)}$	per IGBT				0,075	K/W

IGBT Modules

SKM 300GA123D

Features

- MOS input (voltage controlled)
- . N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

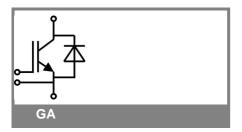

Typical Applications

• Switching (not for linear use)

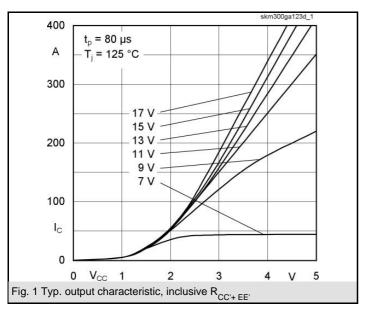
Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse Diode						
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V _{F0}		T _j = 25 °C				V
		T _j = 125 °C				V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _{Fnom} = 200 A	T _j = 25 °C		80		Α
Q_{rr}				11		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)D}$	per diode				0,15	K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ
		T _{case} = 125 °C		0,22		$m\Omega$
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm
w					330	g

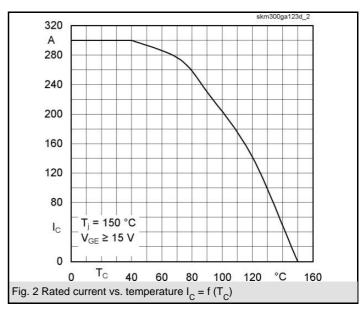
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

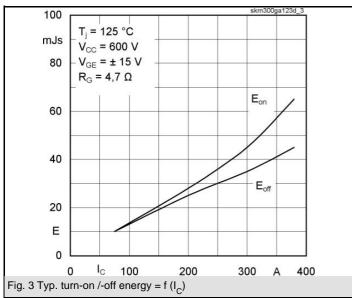
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

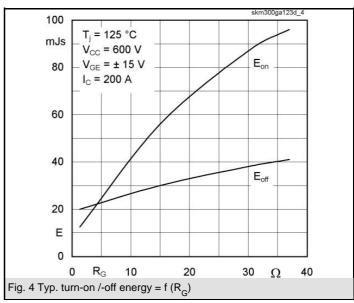

IGBT Modules

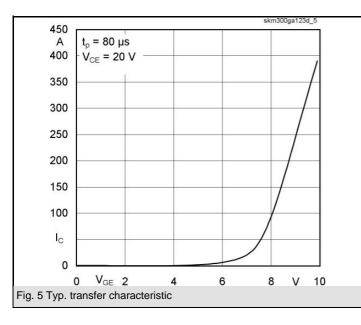
SKM 300GA123D


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)


Typical Applications


Switching (not for linear use)




Z _{th} Symbol	Conditions	Values	Units			
Z _{th(j-c)l}	Z ₁₁₋₍₁₋₂₎ 1					
R _i	i = 1	53	mk/W			
R _i	i = 2	18,5	mk/W			
R _i R _i	i = 3	3,1	mk/W			
R _i	i = 4	0,4	mk/W			
tau _i	i = 1	0,04	s			
tau _i	i = 2	0,0189	s			
tau _i	i = 3	0,0017	s			
tau _i	i = 4	0,003	s			
Z _{th(j-c)D}			·			
R _i	i = 1	85	mk/W			
R_{i}	i = 2	30	mk/W			
R_{i}	i = 3	8,8	mk/W			
Ri	i = 4	1,2	mk/W			
tau _i	i = 1	0,04	s			
tau _i	i = 2	0,0044	s			
tau _i	i = 3	0,0078	s			
tau _i	i = 4	0,005	s			

