

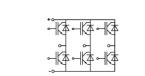
SEMITOP[®] 3

IGBT Module

SK 10 GD 123

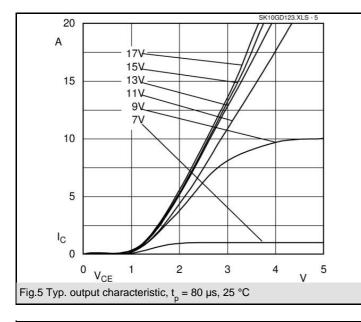
Preliminary Data

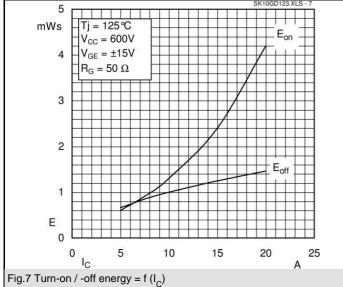
Features

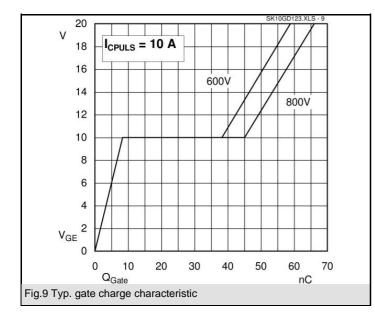

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63532

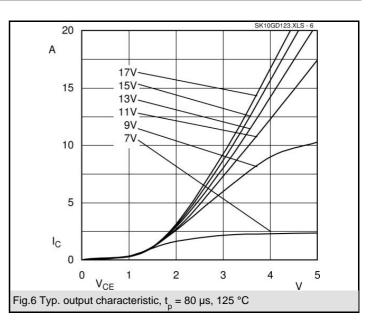
Typical Applications

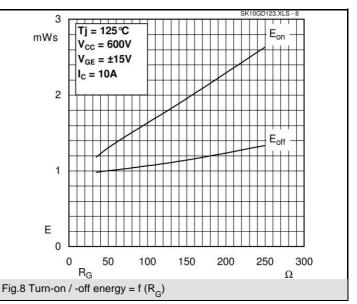
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

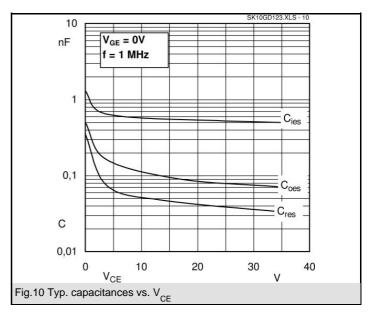

Absolute Maximum Ratings		T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1200	V				
V _{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	16 (11)	А				
I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;	32 (22)	А				
Тj		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
I _F = - I _C	T _s = 25 (80) °C;	18 (12)	А				
$I_{FM} = -I_{CM}$	t _p < 1 ms; T _s = 25 (80) °C;	36 (24)	А				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

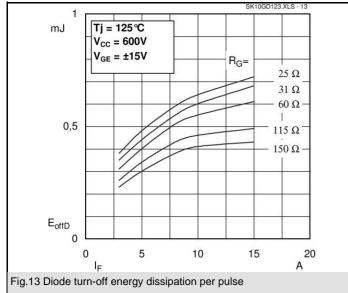

Characteristics		T _s = 25 °C	T_s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{CE(sat)}	I _C = 10 A, T _j = 25 (125) °C		2,7 (3,3)	3,2 (3,9)	V	
V _{GE(th)}	$V_{CE} = V_{GE}; I_{C} = 0,0004 \text{ A}$	4,5	5,5	6,5	V	
C _{ies}	V _{CE} = 25 V; V _{GE} = 0 V; 1 MHz		0,53		nF	
R _{th(j-s)}	per IGBT			1,8	K/W	
	per module				K/W	
	under following conditions:					
t _{d(on)}	V_{CC} = 600 V , V_{GE} = ± 15 V		30		ns	
t _r	I _C = 10 A, T _j = 125 °C		45		ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = 50 \Omega$		200		ns	
t _f			35		ns	
$E_{on} + E_{off}$	Inductive load		2,3		mJ	
Inverse /	Freewheeling CAL diode					
V _F = V _{EC}	I _F = 10 A; T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V	
V _(TO)	$T_{i} = (125) \ ^{\circ}C$		(1)	(1,2)	V	
r _T	T _j = (125) °C		(80)	(110)	mΩ	
R _{th(j-s)}				2,1	K/W	
	under following conditions:					
I _{RRM}	I _F = 10 A; V _R = 600 V		12		А	
Q _{rr}	dI _F /dt = -300 A/µs		1,8		μC	
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,4		mJ	
Mechani	cal data	•			•	
M1	mounting torque			2,5	Nm	
w			30		g	
Case	SEMITOP [®] 3		T 12			

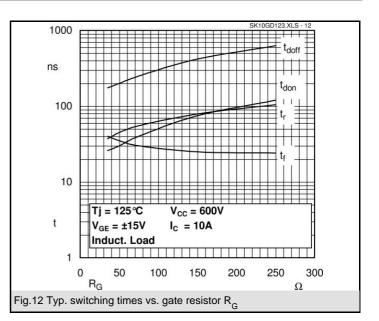


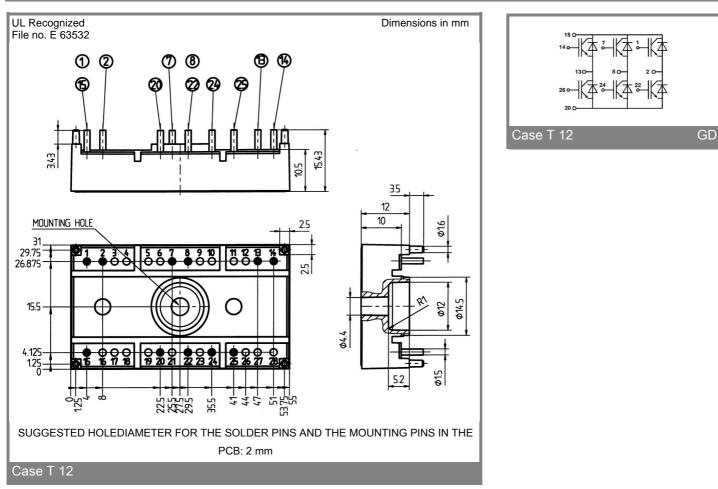

GD











This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.