

SEMITRANS ${ }^{\text {TM }} 2$

Low Loss IGBT Module

SKM 100GB124D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Silicon structure (NPT- Non punch-through IGBT)
- Low loss high density chip
- Low tail current
- High short circuit capability, self limiting to $6 \times \mathrm{I}_{\text {cnom }}$
- Latch-up free
- Fast \& soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switching (not for linear use)

Absolute Maximum Ratings		$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$, unless otherwise specified	
Symbol	Conditions	Values	\| Units
IGBT			
$\mathrm{V}_{\text {CES }}$		1200	V
${ }^{\text {c }}$	$\mathrm{T}_{\mathrm{c}}=25(85){ }^{\circ} \mathrm{C}$	150 (100)	A
${ }^{\text {CrRM }}$	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$	150	A
$V_{\text {GES }}$		± 20	V
$\mathrm{T}_{\mathrm{vj}},\left(\mathrm{T}_{\text {stg }}\right)$	$\mathrm{T}_{\text {OPERATION }} \leq \mathrm{T}_{\text {stg }}$	-40 ... +150 (125)	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	AC, 1 min.	2500	V
Inverse diode			
I_{F}	$\mathrm{T}_{\mathrm{c}}=25(80){ }^{\circ} \mathrm{C}$	95 (65)	A
$\mathrm{I}_{\text {FRM }}$	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$	150	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} ; \sin . ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	720	A

Characteristics		$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	\| Units
IGBT					
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{V}_{\text {GE }}=\mathrm{V}_{\text {CE }}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$	4,5	5,5	6,5	
${ }^{\text {ces }}$	$\mathrm{V}_{\mathrm{GE}}=0, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {CES }}, \mathrm{T}_{\mathrm{j}}=25(125){ }^{\circ} \mathrm{C}$		0,1	0,3	mA
$\mathrm{V}_{\text {CE(TO) }}$	$\mathrm{T}_{\mathrm{j}}=25(125){ }^{\circ} \mathrm{C}$		1,1 (1,1)	1,25 $(1,25)$	V
$\mathrm{r}_{\text {CE }}$	$\mathrm{V}_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25(125){ }^{\circ} \mathrm{C}$		13,3 (17,3)	$16(21,3)$	$\mathrm{m} \Omega$
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$, chip level		2,1 $(2,4)$	$2,45(2,85)$	V
$\mathrm{C}_{\text {ies }}$	under following conditions		5	6,6	nF
$\mathrm{C}_{\text {oes }}$	$\mathrm{V}_{\mathrm{GE}}=0, \mathrm{~V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0,72	0,9	nF
$\mathrm{C}_{\text {res }}$			0,38	0,5	nF
$\mathrm{L}_{\text {CE }}$				30	nH
$\mathrm{R}_{\text {CC' }+ \text { EE' }}$	res., terminal-chip $\mathrm{T}_{\mathrm{c}}=25(125){ }^{\circ} \mathrm{C}$		0,75 (1)		$\mathrm{m} \Omega$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}$		80		ns
	$\mathrm{R}_{\text {Gon }}=\mathrm{R}_{\text {Goff }}=10 \Omega, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		45		ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V}$		430		ns
			55		ns
$\mathrm{E}_{\text {on }}\left(\mathrm{E}_{\text {off }}\right)$			11 (9)		mJ
Inverse diode					
$\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{EC}}$	$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25(125){ }^{\circ} \mathrm{C}$		$2(1,8)$	2,5	V
$\mathrm{V}_{(\text {(TO) }}$	$\mathrm{T}_{\mathrm{j}}=125()^{\circ} \mathrm{C}$		1,1	1,2	V
r_{T}	$\mathrm{T}_{\mathrm{j}}=125(){ }^{\circ} \mathrm{C}$			15	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {RRM }}$	$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=125()^{\circ} \mathrm{C}$		42		A
$\mathrm{Q}_{\text {rr }}$	$\mathrm{di} / \mathrm{dt}=800 \mathrm{~A} / \mathrm{\mu s}$		9,1		$\mu \mathrm{C}$
E_{rr}	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}$				mJ
Thermal characteristics					
$\mathrm{R}_{\text {th(}}^{\text {(c) }}$ (per IGBT			0,18	K/W
$\mathrm{R}_{\text {th(}(\mathrm{c}) \mathrm{D}}$	per Inverse Diode			0,5	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{c}-\mathrm{s})}$	per module			0,05	K/W
Mechanical data					
$\mathrm{M}_{\text {s }}$	to heatsink M6	3		5	Nm
M_{t}	to terminals M5	2,5		5	Nm
w				160	g

Fig. 1 Typ. output characteristic, inclusive $\mathrm{R}_{\mathrm{CC}^{\prime}+\mathrm{EE}}$

Fig. 5 Typ. transfer characteristic

Fig. 2 Rated current vs. temperature $I_{C}=f\left(T_{C}\right)$

Fig. 4 Typ. turn-on /-off energy $=f\left(R_{G}\right)$

Fig. 6 Typ. gate charge characteristic

Fig. 8 Typ. switching times vs. gate resistor R_{G}

Fig. 12 Typ. CAL diode peak reverse recovery current

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

