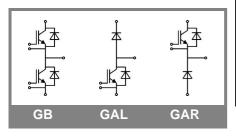


SEMITRANS[®] 3

IGBT Modules


SKM 300GB123D SKM 300GAL123D SKM 300GAR123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (12 mm) and creepage distance (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute	Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values	Units		
IGBT				<u>.</u>		
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	300	Α		
		T _{case} = 80 °C	220	Α		
I_{CRM}	I _{CRM} =2xI _{Cnom}		400	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse [Diode			•		
I_{F}	T _j = 150 °C	T_{case} = 25 °C	260	Α		
		T _{case} = 80 °C	180	Α		
I_{FRM}	I _{FRM} =2xI _{Fnom}		400	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2200	А		
Freewhe	eling Diode			•		
I_{F}	T _j = 150 °C	T_{case} = 25 °C	350	Α		
		T _{case} = 80 °C	230	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α		
I _{FSM}	$t_p = 10 \text{ ms}; \sin$	T _j = 150 °C	2900	А		
Module						
$I_{t(RMS)}$			500	Α		
T _{vj}			- 40+ 150	°C		
T _{stg}			- 40+ 125	°C		
V _{isol}	AC, 1 min.		2500	V		

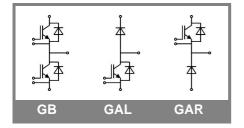
Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}$, $I_{C} = 8 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V_{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		5,5	7	mΩ
		T _j = 125°C		7,5	9,5	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V			2,5	3	V
		$T_j = 125^{\circ}C_{chiplev}$		3,1	3,7	V
C _{ies}				18	24	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2,5	3,2	nF
C _{res}				1	1,3	nF
Q_G	-8V - +20V			2000		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				250	400	ns
t _r	$R_{Gon} = 4.7 \Omega$	V _{CC} = 600V		90	160	ns
E _{on}		I _C = 200A		28		mJ
t _{d(off)}	$R_{Goff} = 4.7 \Omega$	T _j = 125 °C		550	700	ns
t _f				70	100	ns
E _{off}				26		mJ
$R_{th(j-c)}$	per IGBT				0,075	K/W

IGBT Modules

SKM 300GB123D SKM 300GAL123D SKM 300GAR123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distance (20 mm)


Typical Applications

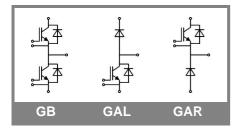
- AC inverter drives
- UPS

Character	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						_
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$				V
r _F		T _j = 25 °C		4,5	6,5	mΩ
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 125 ^{\circ}\text{C}$				mΩ
I _{RRM}	I _F = 200 A	T _j = 125 °C		105		Α
Q _{rr}	di/dt = 4000 A/µs			10		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)D}$	per diode				0,18	K/W
Freewhee	ling Diode		ī			•
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V
V_{F0}	I _{Fnom} = 300 A; V _{GE} = 0 V	T _j = 25 °C		1,1	1,2	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$				V
r _F		T _j = 25 °C		3	4,3	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 125 ^{\circ}\text{C}$				V
I _{RRM}	I _F = 200 A	T _j = 125 °C		140		A
Q _{rr}	di/dt = 3500 A/µs			34		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode				0,15	K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M_s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

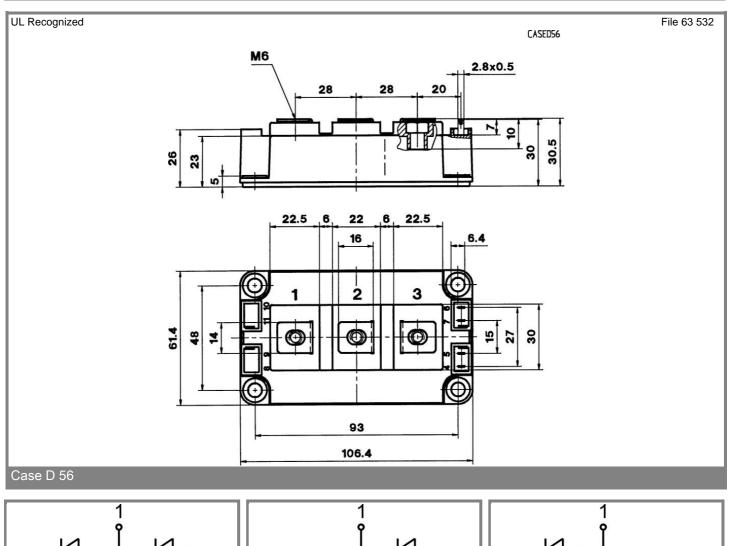
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

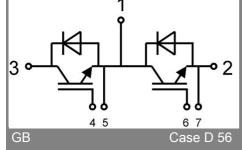
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

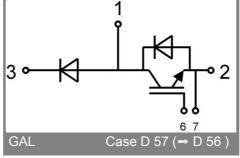
IGBT Modules

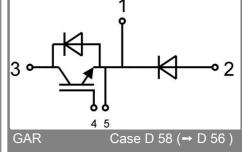

SKM 300GB123D SKM 300GAL123D SKM 300GAR123D

F	eati	ure	S
---	------	-----	---


- MOS input (voltage controlled)
- N channel , Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distance (20 mm)


Typical Applications


- AC inverter drives
- UPS



Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	53	mk/W
R_i	i = 2	18,5	mk/W
R_i	i = 3	3,1	mk/W
R_{i}	i = 4	0,4	mk/W
tau _i	i = 1	0,04	s
tau _i	i = 2	0,0189	s
tau _i	i = 3	0,0017	s
tau _i	i = 4	0,003	s
Z _{th(j-c)D}			·
R _i	i = 1	0,1151	mk/W
R_i	i = 2	0,0525	mk/W
R_i	i = 3	0,0111	mk/W
R _i	i = 4	0,0022	mk/W
tau _i	i = 1	0,0366	s
tau _i	i = 2	0,0113	s
tau _i	i = 3	0,003	s
tau _i	i = 4	0,0002	s

